Crash of a Beechcraft A100 King Air in Margaree

Date & Time: Aug 16, 2015 at 1616 LT
Type of aircraft:
Operator:
Registration:
C-FDOR
Survivors:
Yes
Schedule:
Halifax – Margaree
MSN:
B-103
YOM:
1972
Country:
Crew on board:
2
Crew fatalities:
Pax on board:
2
Pax fatalities:
Other fatalities:
Total fatalities:
0
Captain / Total flying hours:
1723
Captain / Total hours on type:
298.00
Copilot / Total flying hours:
532
Copilot / Total hours on type:
70
Aircraft flight hours:
14345
Circumstances:
On 16 August 2015, a Maritime Air Charter Limited Beechcraft King Air A100 (registration C-FDOR, serial number B-103) was on a charter flight from Halifax Stanfield International Airport, Nova Scotia, to Margaree Aerodrome, Nova Scotia, with 2 pilots and 2 passengers on board. At approximately 1616 Atlantic Daylight Time, while conducting a visual approach to Runway 01, the aircraft touched down hard about 263 feet beyond the threshold. Almost immediately, the right main landing gear collapsed, then the right propeller and wing contacted the runway. The aircraft slid along the runway for about 1350 feet, then veered right and departed off the side of the runway. It came to rest about 1850 feet beyond the threshold and 22 feet from the runway edge. There were no injuries and there was no post-impact fire. The aircraft was substantially damaged. The occurrence took place during daylight hours. The 406-megahertz emergency locator transmitter did not activate.
Probable cause:
Findings:
Findings as to causes and contributing factors:
1. Neither pilot had considered that landing on a short runway at an unfamiliar aerodrome with known high terrain nearby and joining the circuit directly on a left base were hazards that may create additional risks, all of which would increase the crew’s workload.
2. The presence of the tower resulted in the pilot not flying focusing his attention on monitoring the aircraft’s location, rather than on monitoring the flight or the actions of the pilot flying.
3. The crew’s increased workload, together with the unexpected distraction of the presence of the tower, led to a reduced situational awareness that caused them to omit the Landing Checks checklist.
4. At no time during the final descent was the engine power increased above about 400 foot-pounds of torque.
5. Using only pitch to control the rate of descent prevented the pilot flying from precisely controlling the approach, which would have ensured that the flare occurred at the right point and at the right speed.
6. Neither pilot recognized that the steep rate of descent was indicative of an unstable approach.
7. Advancing the propellers to full would have increased the drag and further increased the rate of descent, exacerbating the already unstable approach.
8. The aircraft crossed the runway threshold with insufficient energy to arrest the rate of descent in the landing flare, resulting in a hard landing that caused the right main landing gear to collapse.
Findings as to risk:
1. If data recordings are not available to an investigation, then the identification and communication of safety deficiencies to advance transportation safety may be precluded.
2. If organizations do not use modern safety management practices, then there is an increased risk that hazards will not be identified and risks will not be mitigated.
3. If passenger seats installed in light aircraft are not equipped with shoulder harnesses, then there is an increased risk of passenger injury or death in the event of an accident.
4. If the experience and proficiency of pilots are not factored into crew selection, then there is a risk of suboptimal crew pairing, resulting in a reduction of safety margins.
5. If pilots do not carry out checklists in accordance with the company’s and manufacturer’s instructions, then there is a risk that a critical item may be missed, which could jeopardize the safety of the flight.
6. If crew resource management is not used and continuously fostered, then there is a risk that pilots will be unprepared to avoid or mitigate crew errors encountered during flight.
7. If organizations do not have a clearly defined go-around policy, then there is a risk that flight crews will continue an unstable approach, increasing the risk of an approach-and-landing accident.
8. If pilots are not prepared to conduct a go-around on every approach, then there is a risk that they may not respond to situations that require a go-around.
9. If operators do not have a stable approach policy, then there is a risk that an unstable approach will be continued to a landing, increasing the risk of an approach-andlanding accident.
10. If an organization’s safety culture does not fully promote the goals of a safety management system, then it is unlikely that it will be effective in reducing risk.
Other findings:
1. There were insufficient forward impact forces to automatically activate the emergency locator transmitter.
Final Report:

Crash of a Beechcraft A100 King Air in Timmins

Date & Time: Sep 26, 2014 at 1740 LT
Type of aircraft:
Operator:
Registration:
C-FEYT
Survivors:
Yes
Schedule:
Moosonee – Timmins
MSN:
B-210
YOM:
1975
Flight number:
CRQ140
Location:
Country:
Crew on board:
2
Crew fatalities:
Pax on board:
7
Pax fatalities:
Other fatalities:
Total fatalities:
0
Captain / Total flying hours:
2400
Captain / Total hours on type:
1000.00
Copilot / Total flying hours:
580
Copilot / Total hours on type:
300
Aircraft flight hours:
14985
Aircraft flight cycles:
15570
Circumstances:
The aircraft was operating as Air Creebec flight 140 on a scheduled flight from Moosonee, Ontario, to Timmins, Ontario, with 2 crew members and 7 passengers on board. While on approach to Timmins, the crew selected “landing gear down,” but did not get an indication in the handle that the landing gear was down and locked. A fly-by at the airport provided visual confirmation that the landing gear was not fully extended. The crew followed the Quick Reference Handbook procedures and selected the alternate landing-gear extension system, but they were unable to lower the landing gear manually. An emergency was declared, and the aircraft landed with only the nose gear partially extended. The aircraft came to rest beyond the end of Runway 28. All occupants evacuated the aircraft through the main entrance door. No fire occurred, and there were no injuries to the occupants. Emergency services were on scene for the evacuation. The accident occurred during daylight hours, at 1740 Eastern Daylight Time.
Probable cause:
Findings as to causes and contributing factors:
1. During the extension of the landing gear, a wire bundle became entangled around the landing-gear rotating torque shaft, preventing full extension of the landing gear.
2. The entanglement by the wire bundle also prevented the alternate landing-gear extension system from working. The crew was required to conduct a landing with only the nose gear partially extended.
Other findings:
1. The wire bundle consisted of wiring for the generator control circuits, and when damaged, disabled both generators. The battery became the only source of electrical power until the aircraft landed.
Final Report:

Crash of a Beechcraft B100 King Air in Pearland: 1 killed

Date & Time: Feb 19, 2014 at 0845 LT
Type of aircraft:
Operator:
Registration:
N811BL
Flight Type:
Survivors:
No
Schedule:
Austin – Galveston
MSN:
BE-15
YOM:
1976
Location:
Crew on board:
1
Crew fatalities:
Pax on board:
0
Pax fatalities:
Other fatalities:
Total fatalities:
1
Captain / Total flying hours:
1281
Captain / Total hours on type:
192.00
Circumstances:
The non-instrument-rated pilot departed on a cross-country flight in a twin-engine turboprop airplane on an instrument flight plan. As the pilot neared his destination airport, he received heading and altitude vectors from air traffic control. The controller cleared the flight for the approach to the airport; shortly afterward, the pilot radioed that he was executing a missed approach. The controller then issued missed approach instructions, which the pilot acknowledged. There was no further communication with the pilot. The airplane collided with terrain in a near-vertical angle. About the time of the accident, the automated weather reporting station recorded a 300-foot overcast ceiling, and 5 miles visibility in mist. Examination of the wreckage did not reveal any anomalies that would have precluded normal operation. Additionally, both engines displayed signatures consistent with the production of power at the time of impact. The pilot's logbook indicated that he had a total of 1,281.6 flight hours, with 512.4 in multi-engine airplanes and 192.9 in the accident airplane. The logbook also revealed that he had 29.7 total hours of actual instrument time, with 15.6 of those hours in the accident airplane. Of the total instrument time, he received 1 hour of instrument instruction by a flight instructor, recorded about 3 years before the accident. The accident is consistent with a loss of control in instrument conditions.
Probable cause:
The noninstrument-rated pilot's loss of airplane control during a missed instrument approach. Contributing to the accident was the pilot's decision to file an instrument flight rules flight plan and to fly into known instrument meteorological conditions.
Final Report:

Crash of a Beechcraft A100 King Air in Saint-Mathieu-de-Beloeil

Date & Time: Jun 10, 2013 at 1725 LT
Type of aircraft:
Operator:
Registration:
C-GJSU
Flight Type:
Survivors:
Yes
Schedule:
Montreal - Montreal
MSN:
B-88
YOM:
1971
Country:
Crew on board:
1
Crew fatalities:
Pax on board:
3
Pax fatalities:
Other fatalities:
Total fatalities:
0
Captain / Total flying hours:
4301
Captain / Total hours on type:
1500.00
Aircraft flight hours:
13616
Aircraft flight cycles:
10999
Circumstances:
The aircraft took off from the Montréal/St-Hubert Airport, Quebec, on a local flight under visual flight rules with 1 pilot and 3 passengers on board. The purpose of the flight was to check the rudder trim indicator and to confirm a potential synchronization problem between the autopilot and the global positioning system (GPS). As the aircraft approached Runway 24R at the Montréal/St-Hubert Airport, both engines (Pratt & Whitney Canada, PT6A-28) stopped due to fuel exhaustion. The pilot diverted to the St-Mathieu-de-Beloeil Airport, Quebec, and then attempted a forced landing in a field 0.5 nautical mile west of the St-Mathieu-de-Beloeil Airport. The aircraft struck the ground 30 feet short of the selected field, at 1725 Eastern Daylight Time. The aircraft was extensively damaged, and the 4 occupants sustained minor injuries. The emergency locator transmitter activated during the occurrence. The flight took place during daylight hours, and there was no fire.
Probable cause:
Findings as to causes and contributing factors:
- The pilot relied exclusively on the gauge readings to determine the quantity of fuel on board, without cross-checking the fuel consumption since the last fueling to validate those gauge readings.
- The pilot misread the fuel gauges and assumed that the aircraft had enough fuel on board to meet the minimum fuel requirements of the Canadian Aviation Regulations for this visual flight rules flight, rather than adding more fuel to meet the greater reserves required by the company operations manual.
- The pilot did not monitor the fuel gauges while in flight and decided to extend the flight to carry out a practice instrument approach with insufficient fuel to complete the approach.
- The right engine stopped due to fuel exhaustion.
- The pilot did not carry out the approved engine failure procedure when the first engine stopped, and the propeller was not feathered, resulting in significant drag which reduced the aircraft's gliding range after the second engine stopped.
- The pilot continued flying toward Montréal/St-Hubert Airport (CYHU), Quebec, despite having advised air traffic control of the intention to divert to the St-Mathieu-de-Beloeil Airport (CSB3), Quebec, and without communicating the emergency. The priority given to communications resulted in the aircraft moving farther away from the intended diversion airport.
- The left engine stopped due to fuel exhaustion 36 seconds after the right engine stopped, when the aircraft was 7.4 nautical miles from Runway 24R at Montréal/St-Hubert Airport (CYHU), Quebec, and 2400 feet above sea level.
- The pilot's decision to lower the landing gear while the aircraft was still at 1600 feet above sea level further increased the drag, reducing the aircraft's gliding range. As a result, the aircraft was not able to reach the runway at St-Mathieu-de-Beloeil Airport (CSB3), Quebec.
- The operations manager was unable to perform the duties and responsibilities of the position related to monitoring and supervision of flight operations. As a result, the safety of more than half of the flights was compromised.
Findings as to risk:
- If the total fuel quantity required for a flight is not calculated and clearly displayed on the operational flight plan, there is an increased risk that aircraft will depart without the fuel reserves required by the Canadian Aviation Regulations.
- If flights are planned and carried out without the fuel reserves required by the Canadian Aviation Regulations, there is an increased risk of fuel exhaustion resulting from unanticipated situations that extend the duration of the flight.
- If pilots elect to extend flight without first determining whether sufficient fuel reserves are available to do so, there is an increased risk of fuel exhaustion.
- If pilots do not regularly check the quantity of fuel on board, there is an increased risk of fuel exhaustion.
- If pilots do not rule out a fuel leak before opening the crossfeed valve, they risk losing all of the remaining fuel on board.
- If a pilot does not maintain control of an aircraft until landing, the force of an impact following an aerodynamic stall is likely to be far greater, increasing the risk of injury or death during a forced landing.
- If a pilot does not declare an emergency to air traffic control in a timely manner, the pilot may be deprived of assistance and resources that could help deal with the emergency, increasing the risk of an accident.
- If pilots do not receive training in dealing with complex emergencies that require prioritizing tasks, there is a risk that they will not react effectively to emergencies, increasing the risk of an accident.
- If companies do not establish a process to monitor the performance of their pilots during training and testing, there is a risk that those companies will inadvertently assign pilots to carry out flights for which they are not proficient.
- If a flight is planned and authorized solely by the pilot, with no cross-check for compliance with existing regulations, there is a risk that deviations will continue undetected, reducing the safety of the flight.
- If pilots operate without regular supervision to ensure compliance with regulations and company procedures, coupled with effective training, there is a risk of procedural adaptations that result in reduced safety margins.
- If companies assign inexperienced personnel to key flight operations management positions, there is a risk that deviations in performance or from regulations will not be detected, reducing the safety of flight operations.
- If the pilot proficiency check requirements for a chief pilot are not more stringent than those for other pilots, there is a risk that the chief pilot will be unable to perform the duties required to ensure the safety of company training and operations.
- If the approval process for appointment of operations management personnel by companies is reduced to a compliance checklist based on the minimum standards in the Commercial Air Service Standards and on pilot proficiency checks that may be repeated an unlimited number of times, there is a risk that candidates who are unfit to perform the duties and responsibilities of their positions will be appointed.
- If Transport Canada does not take into consideration the combined knowledge and experience of a new operator's management team, there is a risk that the operator will lack the skills necessary to ensure the safety of flight operations.
- If process inspections carried out by Transport Canada do not examine factors related to a recent occurrence, there is a risk that those hazardous conditions will go undetected and will persist.
If process inspections carried by TC on newly certificated operators do not closely examine the outcomes of company processes, there is a risk that hazardous conditions will not be identified and will persist.
- If the inability of appointed individuals to perform their duties and responsibilities does not constitute grounds for suspending or revoking the ministerial approval of such appointments, there is a risk that operations management personnel who are not competent will remain in their positions, increasing the risk to flight safety.
Other findings:
- The chief pilot did not meet the requirements of the Canadian Aviation Regulations at the time of appointment.
- There was no indication that the aircraft's fuel gauges were not functioning properly at the time of the occurrence flight, and it is unlikely that a deviation of the fuel gauge indicator was a factor in the pilot's decision to take off.
- C-GJSU had approximately 260 pounds of fuel on board when it took off from Montréal/St-Hubert Airport (CYHU), Quebec, and did not experience a fuel leak during the occurrence flight.
Final Report:

Crash of a Beechcraft B100 King Air in Libby: 2 killed

Date & Time: Dec 19, 2012 at 0002 LT
Type of aircraft:
Operator:
Registration:
N499SW
Survivors:
No
Schedule:
Coolidge - Libby
MSN:
BE-89
YOM:
1980
Location:
Crew on board:
1
Crew fatalities:
Pax on board:
1
Pax fatalities:
Other fatalities:
Total fatalities:
2
Captain / Total flying hours:
980
Circumstances:
When the flight was about 7 miles from the airport and approaching it from the south in dark night conditions, the noncertificated pilot canceled the instrument flight rules (IFR) flight plan. A police officer who was on patrol in the local area reported that he observed a twin-engine airplane come out of the clouds about 500 ft above ground level and then bank left over the town, which was north of the airport. The airplane then turned left and re-entered the clouds. The officer went to the airport to investigate, but he did not see the airplane. He reported that it was dark, but clear, at the airport and that he could see stars; there was snow on the ground. He also observed that the rotating beacon was illuminated but that the pilot-controlled runway lighting was not. The Federal Aviation Administration issued an alert notice, and the wreckage was located about 7 hours later 2 miles north of the airport. The airplane had collided with several trees on downsloping terrain; the debris path was about 290 ft long. Postaccident examination of the airframe and engine revealed no mechanical malfunctions or failures that would have precluded normal operation. The town and airport were located within a sparsely populated area that had limited lighting conditions, which, along with the clouds and 35 percent moon illumination, would have restricted the pilot’s visual references. These conditions likely led to his being geographically disoriented (lost) and his subsequent failure to maintain sufficient altitude to clear terrain. Although the pilot did not possess a valid pilot’s certificate, a review of his logbooks indicated that he had considerable experience flying the airplane, usually while accompanied by another pilot, and that he had flown in both visual and IFR conditions. A previous student pilot medical certificate indicated that the pilot was color blind and listed limitations for flying at night and for using color signals. The pilot had applied for another student pilot certificate 2 months before the accident, but this certificate was deferred pending a medical review.
Probable cause:
The noncertificated pilot’s failure to maintain clearance from terrain while maneuvering to land in dark night conditions likely due to his geographic disorientation (lost). Contributing to the accident was the pilot’s improper decision to fly at night with a known visual limitation.
Final Report: